BALANCING

10.1 INTRODUCTION

Unbalance in machine components arises either due 1o cecentrie rotating or reciprocating masses. These
masscs introduce severe stresses and result in undesiruble vibrations in the machines. In this chapter. we
shall study the various methods to balance the rotating and reciprocating masses.

The rotating masses may be cither in a single plane or in different plancs. The reciprocating masses give
rise to primary forces and couples and secondary forces and couples. There could be unbalance due to the
combined effect of rotating and reciprocating imasses.

By balancing we mean (o eliminate either partiatly or completely the effects due to resultant inertia forees
and couples to avoid vibration of a machine or device.

10.2 BALANCING OF ROTATING MASSES

10.2.1 Single Rotating Mass

Balance mass in the same plane as the disturbing mass Consider a single mass M
rotating with angular speed w at a radivs r. as shown in Fig. 101 The centrifugal foree due to this mass is

Foi = Mror
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Fig.10.1 Balancing of a single rotating mass by a single mass in the same plane

If a balancing mass B is placed on this retating machine component in the same plane at a radivs 5 and
in line with the mass M at 180", then the centrifugal force due to mass B will be

Fr=25 bor
For the equilibrium of the system. we huve

Fo = F1
ar My = Bh {10, 1)

Two balance masses in different planes 1f ihc balance mass cannot be placed in the sume
.plane as the rotating mass then two parallel masses may be used to balance the rotating mass. The balance

masses may be either on the same side of the unbalance mass or on opposite sides. The equilibrium equations

would require that the resultant sum of their moments about any point in the same plane must be zere.

1. Balance masses on the sume side of the disturbing mass
Consider a mass M at A rotating at a radius » and two balance masses By and B» at 8 and C, paralle] to M.
rotating at radii b and &> respectively. as shown in Fig. 10.2¢a). Let/; and /> be the distances of these masses
from M.

Taking moments about B, we have

. Mrly = Baba (i — 1)

/
Mr [ ! ] (10.2a)

or B:by
fH— 4

Taking moments about €, we have

fl

M.’”z’g B|b] (."2 -fl]

/
or Bib = Mr{:{ 3{] (10.2b)
21
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Consider the two balance masses B) and B> on the opposite sides of the disturbing mass M, as shown in
(10.3a)

M?'h =
Mr h
Iy +1-

2. Balance masses on the opposite sides of the disturbing mass
Fig.10.2(b). Tuking moments about B, we have
Baha i + 1)

B~

or

m
' p3
* ~
e
w1 w0
i
n .

bi
(8,
{b) Disturbing mass in between the balancing masses
Fig.10.2 Balancing of a single mass by two masses
Now taking moments about C. we have
Mrls = Bib(H) +12)
i}
Biby = Mr|-

I +1

10.2.2 Many Masses Rotating in the Same Plane

(10.3b}

Let there be M;, i = | to n, masses rotating in the same plane with radii r;, { = 1 to » and with same angular

or
speed w, as shown in Fig.10.3(a), so that the centrifugal force due to each mass is,
F; = M;-r;-wz
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Since these forces are in the same plane. therefore, they can be represented by the sides of a regular
polygon taken in order, as shown in Fig, 1{L3(b}. Let R be the resultumt of these [orces. Then the resultant
centrifugal force due 10 .

-
R = Z Miriw

{b) Vector diagram

Fig.10.3 Several masses rotating in same plane
If a balancing mass & is placed w1 a radios b at 180° with R. thea the centrifugal force due 1o 8 is,
F, = Bber
For the equilibrium of the system. we have
R =F

or Z M;r; = Bb (10.4)

From (10.4), it may be seen that the force pelygon may be drawn for M;r; instead of M;r; e
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Example 10.1

Four masses 150 kg, 250 kg, 200 kg and 34) kg are rotating in the same plane at radii of 0.25 m, 0.2 m,
(+3 m, and 0.35 m respectively. Their angular location is 407, 120°. and 250° fram mass 150 kg. respectively
measured in counter-clockwise direction. Find the position and magnitude of the balance mass required, if
its radius of rotation is .25 m.

M Solution
The mass space diagram is shown in Fig. 10.4(a). The problem can be solved either analytically or graphically.

200 kg

250 kg

cd=09

300 kg R=18kgm
{a) Space diagram {b) Vector diagram ~ Scele: 1cm =20kg.m
Fig.10.4
Analytical method
Table 10.1
M r Mr t H = Mrcosf) = Mrsin#
kg m kegm deg kgm kgm
150 0.25 375 0 373 O
2500 020 500 40 38.3 32.14
200 030 600 120 =30 51.96
3000 .35 1050 250 —359 —98.67

From Table 10.1.

ZH = 60 Z V= —14,5?EH
=[]

s 05
_ [(9.9)— + (—14.5713] — 17.6] kgm
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Let B be the balancing mass, then

0.25B = 1761
or B = 7046 kg

Let 8, be the angle of the resultant with 150 kg mass. then

—14.57
tang, = — - = —1.47172
—49
or #, = —558"°

Angle of the balance mass from the horizontal mass 150 ke is
By = 180° — 55.8° = 124.2° cew

Graphical method

The graphical construction is shown in Fig. 10.4(b). By measurement:
R=1761 kgm Then B=7046kg. @ =-55% and @&, = 124.2°

10.2.3 Many Masses Rotating in Different Planes

Consider a force £ in plane B, as shown in Fig. 10.5. Let this force be transferred 1o a reference plune A at
distance a . The effect of transferring a force F from plane B to plane A is:

7

- - Reference plane

\

Fig.10.5 Equivalence of a force

1. an unbalance force F» = F on plane A. and

2. an unbalanced couple, C = Fa.

The couple is represented by a vector at right angles to the plane of the couple and the arrow head points
mn the direction in which a right hand screw would move if acted upon by the couple. In practice the phase
of the couple diagram is rotated through 90° counter-clockwise,

This leads to the balancing equations, in general

0

ZM!‘{J =10

0]
S
!
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Let us consider the mass system as shown in Fig.10.6(a). The orientation of the forces is shown in
Fig.10.6(b). The couples acting on the system are:

C| - *-M]f']!'j
Co = Manb
Cy = Manily
C4 - M4I’4."4
:: B, ‘:
\‘Ir,’
b\ r f3 ibz
e |
yd . .
iq- _ ]'3 — - I
-+ - d - —_— -~
RP = — — -
(a) {b} Force vectors
C
1
Cy
C
Cy 2
c1
<,
Cy
Cn
{c) Couple vectors {d) Couple vectors turned though 90° cow

M3r3

{e) Couple polygon {f) Force polygon

Fig.10.6 Several masses rotating in different planes
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The couples are shown in Fig.10.6(c), and when turned through 90°, are shown in Fig.10.6{(d}. The
couple vectors may be fixed in their correct relative positions by drawing them radially outwards along the
corresponding radii tor all masses which lie on one side of the fixed point A and radially inwards along the
corresponding radii for all masses which lic on the other side of the fixed point A. The fixed point A is taken
as the point of intersection of the plane of rotation of one of the batancing masses 8, and the axis of rotation,
in order to eliminate the couple duc to the mass in this plane. The planc at A is known as the reference plane.
The couple polygon has been drawn in ig. 13.6(e). The resultant couple is represented by C'g, the closing
side of the couple polygon. as shown,

Now Cu = Babod
p

or I (10.5)
;"?:(.r"

Knowing Bz and its direction. draw the force polygon, as shown in Fig. 10.6(f). The closing side of the
force polygon will represent the magnitude und dircclion of the force due to the balancing mass required in
plane A. The whole process can be represented by the following table:

Tabie 10.2
Planc  Mass  Radius Mr Distance itom plane A Couple

M r (31 = / Mri

(1) (2 (1) x t2) (41 (3= (3 x4
1 .41] 1 NI]."] -—!'| —,M|l'|f|
A B U by ] ]
2 fW: I M}J'g !3 Mfg."].l"j_r
3 M ri Mars {3 Maraf,
B £ b Babn o Babad
3 My r Myry Iy Marily

10.2.4 Analytical Method
Several masses in the same plane

Let M, = number of masses. 7 = 1.2.3....
ri = radius of mass M;
#; = angle of mass M, with x-axis measured counter-clockwise
B = balancing mass
b = radius of balancing mass
B = angle of mass B with x-axis measured counter-clockwise

Considering forces along the x and y-axes. we have

> Mirsconty + Bbeosny, = 0; > My sing; + Bhsinty, = 0
SIS

B

4 13(L5

[(Z__ M_,-r,- CiYy U,‘)- + (Z M;‘ Fr sin H;‘ )“:I

or B =+ - ; -— (10.6)
7
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_______ (10.7)

tanf, =

Several masses in different planes If M; and M), be the balance forces at radii rz and ry

respectively, then for the balance of couples about plane L., we have
0.5

[(ZM,-r;-;,-cosaf)}L (ZM,—r,—I; sine,-)‘} = Myrssly (10.8)
~ ¥ Mirl; sin
fanfy = 2 Mirili sin6; (10.9)

For the balance of forces, we have — 2 Miridicos 6,

I:(Z My cost‘),-)2 -+ (Z Mir; sin H,-)
- 0.5
Mir = [(Z M;ri cos8; + Maury cos nM)" + (Z M.r; sin§; + Myra sin GM)Z] (10.10)

_ (Z Mirisinf; + Magrag sin HM) (10.11)
— (Z Miricos® + Muyry COSQM) .

05

2

.5
] = [(Mm. cos81)° + (Mpgrpy sin QM)Z:I

tan @y =

Example 10.2
A shaft carries four masses as shown in Fig.10.7(2) and (b). The balancing masses are to be placed in planes
L and M. If the balancing masses revolve at a radius of 100} mm, find their magnitude and angular positions.

250 kg
200 kg
o B @0
O lr® 300kg
70 mm | ; 80
| B0 '
! 50
L _4 R
100 200 !
— e
300
400 - N
500 mm
(a) Reference plane (b}
d Scale: 1cm =1kg. m?

{c) Couple polygon (d) Force polygon
Fig.10.7 Shaft carrying four masses
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B Solution
Assume the plane L as the reference plane.

Table 10.3

Plane Mass. M Radius, r Mr Distance from plane 1,1 Mri

kg m kgm m kgm?
A 150 0.7 10.3 -1 ~1.05
L M, 0.10 0.1 My 0 0
B 200 0.06 12.0 0.2 240
C 300 0.05 15.0 0.3 4.50
M My 0.10 0.1 My 0.4 0.04 My
D

250 0.08 20.0 0.5 10.0

t. Draw the c0up]'e polygon from the data in the last column of Table 10.3. as shown in Fig.§0.7(c). By
measurement,

0.04My = vector d’'v’' = 7.7cm
or My = 192.5kg

The angular position of My, is obtained by drawing OB parallel to d’o " in Fig.10.7(b). 6y = 8°.

ra

Now draw the force polygon from the data in column 4 of the table, as shown in Fig.10.7(d). The vector
mo represents the balance force. By measurement

0M; = vectormo =47 x5
or My = 235kg

The angular position of M, i< obtained by drawing a line parallel to mo in Fig.10.7(b). 8, = 30" +
180° = 210°.

Analytical method
Reference plane L
From Table 10.4.
3 Mricost = 096
Z Mr;sing; = 8832
Z Mirificosd;, = —7 584

Z Mird sing = —1.028

[(Z M,-r,-!; COR 6,')2 + (Z M;‘.",‘f,‘ sin 9,‘)2]05 = MM-"'MI'M

, LS
[(—?.539)-+(—|,028>~'] = 0.04My,

M —7'658—191‘4%
M= So0a e
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M
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tan ¢ _ Z M,—r,-f,- $In H,-
M= — L M, r‘,'l",' Cs 0;
—{—1.028)
= —————— ={L13546
{~7.589)
Hy = 7.71°
Table 10.4
M r Mr # My Mr f Mrl Mrl Mri
kg m deg  x cost) X s X cos@ ® sin &
150 0.07 16.5 0 10.5 0 0.1 -1.05 -1.05 0
200 0.06 12 45 8.485 84385 (.2 2.40 1.697 1.697
300 0.05 15 105 —3.882 14.489 0.3 4.50 -1.165 4.346
250 0.08 20 225 14142 14142 0.5 10.0 -7.071 -7.071
M; 010 O.M; 6 0.10M; 0.1 My, 0 0 0 0
X CONfy, X sin#y
My 01 OlMy By O 1My 0.1 M s 04 0.0dMy  0.04M G04M
X Sin Ay, wcosBy X sinfy

Miry

0.1 My,

My

lan#y =

Since the numerator and denominator are both positive, therefore 8y lies in the tirst quadrant.

* COm g

2 4705
= [(Z Miricosty + Mygrag cos HM) + (Z M r; sint; + Magras sin UM) ]

0.5
= [(0.96] +0.1 x 191.45 x c0os7.71°)% 4 (8.832 4 0.1 x 191,45 x sin 73]")2]

) 0.5
= [( 19.933)% + (11.400)3] = 22.963
= 22963 kg

— {3 Mirrsinf; + Myrry sin P}

—11.400

T 19.933

= 0.5719:;

T {3 Miricos B + Mpgry cos Far)

By = 29.76" 4+ 180° = 209.76°

Since the numerator and denominator are both negative, therefore Ay lies in the third quadrant.

Example 10.3

A shaft has three eccentrics of mass | kg each. The central plane of the eccentrics is 30 mm apart. The
distances of the centers from the axis of rotation are 20 mm, 30 mm and 20 mm and their angular positions
are 120° apart. Find the amount of out-of-balance force and couple at 600 rpm. 1f the shaft is balanced by
adding two masses at a radius of 70 mm and at a distance of 100 mm from the central plane of the middle
eccentric, find the amount of the masses and their angular positions,

# Solution
Analytical method
Let L and M be the planes at which the balancing masses are to be placed. as shown in Fig.10.8(a). Take L as
the reference plane.
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b= 100 mm —= =100 mm  ~
[ : ;

- o e

c

Scale: 1cm=0.01 kgm Scale: 1.cm = 0.001 kgm?

®

kg

1 20?’/. L \\_..120‘,

]

Scale: 1 com = 0.01 kgm?

1|-(g

{¢) Force palygon {d) Couple polygon (e) Force polygon
Fig.10.8
Table 10.5 -
Plane M r Mr f Mr My ! Mri Mri Mri
kg m deg x s A x cosf x $in &

A H 0.02 0.02 (} 0.02 0 0.05 0.001 0.001 0
B I 0.03 0.03 120 -0.0i5 (L02598 0.10 0003 —-0.0015 0.0026
C [ 0.02 0.02 240 ~0.01 —0.01732 015 0.003 -0.0015 —0.0026
L M, 007 0O7M; 6 0.07M; 0.07Mp 0 0 0 0

X COS 8, X sin &;
M My 007 0.07 By DOTMp 0.07 M 02 0014 0.014My  0.014My,

x MM
X oS Ay x sin g xMy  Xcosfy

x §in Oy
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From Table 10.5,
Z Miricost;, = —0.005

ZM,-;-,— sing; = 0.00866
3 Miridicos#; = —0.005
ZM,—:;-;, siné; = 0

[(Z Mirid; 0059,-)2 + (Z Mrd; sin r‘),-)z:’ﬂj = MMryly

; 705
[(—0.002)— + () ] = 0.014My

0.002
0.014
— 3" M;rid; sin6; s
=S Miridicost; — —(—0.002)
By = 0° or 360°

My = =0.1428 kg

tan @y =

Since the numerator is negative and denominator is positive, therefore 84 lies in the fourth quadrant.

2 203
Mir; = [(Z Miricos8; + Marascos HM) + (Z Mir; sin 8; + Mg sin GM) }

s _ 0.5
0.07M, [(4}.005 +0.07 x 0.1428 x cos0°)° + (0.00866 + 0.07 x 0.1428 X sin 0°)2]

If

[{0,005 ) + (0.00866 ;3}05 — 0.0

0.1428 kg

— (3" Mirising; + Magray sin )

— (3 Miri cos6; + Myry cos 0,1;5
—0.00866

—0.005 = 1.732°

Since the numerator and deneminator are both negative, therefore 4y lies in the third quadrant.

M;

tang; =

6, = 240°

Graphical method
Out-of-balance force The out-of-balance force is obtained by drawing the force polygon, as shown in
Fig.10.8¢c), drawn from the data in column 4 of the Table 10.5.

The resultant oc represents the out-of-balance torce.

_ , 600\ 2
Out-of-balance force = vector oc x o~ = 0.01 x [ 27 x 0

= 3948 N

Out-of-balance couple The out-of-balance couple is obtained by drawing the caupte polygon from the
data in celumn 9, as shown in Fig.10.8(d),
, 600
Out-of-balance couple = o'c’ x w? = 0.002 (2:1 x E)
7.9 Nm

1l
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Balancing masses The vector ¢'o” from ¢’ to 0, as shown in Fig.10.8(d}, represents the balancing couple,

0.014My = vector ¢’o’ = 0.002

or M (L1428 kg

I1

Draw OM parallel to ¢'o " in Fig. 10.8(h). We find that the angular position of mass M is from mass A.
To find the balancing mass My, draw the force polygon, as shown in Fig. 10.8(e). The closing side do
of the polygon represents the batuncing force.

0.07M,; = vector om = 0.01
or M; = 0.1428 kg

Now draw Oy in Fig. 1t0.8(b}, parallel to om. We find that the angular position of My is 120° from mass A.

Example 10.4

Three masses M) = 3 kg, M2 = 4 kg, and M3 = 3 kg are rotating n different plancs as shown in Fig.10.9.
Two balancing masses are B) and 8> are placed at 100 mm from each end at 80 mm radivs. Find the
magnitude and angular location of the balancing masses.

RP By
‘. e __5_ - 500 - --- i
- 200 ‘.
== 100 ‘:JL:" Cor 800 mm - - 100
| By |
i,.__ - 1m . -
(a) {b)

Fig.10.9 Three masses rofating in different planes

B Solution

Reference plane &
From Table 10,6, > Miricost; = —0.2020

Y Mir;sing; = 0.2458
3 Mirh cost = —0.14973

Z Miridsin® = 0.01627
0.5]

[(Z M;rid; cos 6,-)2 + (Z Miril, sma,-) 2] = Barais

Lq0.5
[(—0‘ l-’-l‘)?3)2 + (0.()]62?)'] = 0.0648>
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0.15061
By = - —— = 235Kg
0.064
wnb — )_: M;rid; sin H,
- — 3 Ml cos 6
—(0.01627)
= — = —(.10866
—(—{L14973)
= —6.2%r353.8° cew
Table 10.6
Plane M r Mr ¢ Mr Mr / Mri Mrl Mri
kg m deg > cos#H X 8in# % COs X sin @
M 3 008 024 45 01697 .tevy 0! 0.024 0.01697  (L01697
M 4 009 036 150 03117 G180 04 0.144 —0.1247  0.0720
M3 3004 012 240 00600 —0.1039 07 0084 —0.0420 —-0.0727
I By 008 0.08B, 8 0088 0.088, 0 0 0 0
X cosH X sinfy,
2 Br 008 0088, & 0088, 0088, 0.8 006348 00648,  0.0648,
X eosfh X singh X C0s

X sin

Since the numerator is negative and denominalor is positive, therefore 2 lies in the fourth quadrant,

Biri =

0088, =

B = 2.825kg

tant; =

[(Z M;r; cost; -+ Baracos H:) 24 (Z Mir; sinth + Barasinth

) 0
[(—{)‘(JISI}‘ + (0.22549;‘] =0.22%

= —(L225349/ — (—0.0150) = - 14.93311

o =

—86.169° or

273.831°

)2]0.5

, 0.5
]:(—0.2(}20 +0.08 x 2.35 » cos 353.8°)7 4 (0.2458 4 0.08 »x 2.35 x sin 353.8"}2]

- (Z Mirisimé + Barasin Hg\) /= (Z Myricost 4+ Bara cos Hg)

Since the numerator is negative and denominator is positive. theretore §) lies in the fourth quadrant.
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10.3 RECIPROCATING MASSES
10.3.1 Reciprocating Engine

Consider the reciprocating ¢ngine mechanism shown in Fig.10.10.

Fig.10.10 Reciprocating engine mechanism

. . cos 28
Acceleration of the piston, dp =, [cos + -
n

where «. = acceleration of the crankpin = w"r.
Length of connecting rod  {

n = " N =
Radius of crank F

## = inclination of crank o inner dead center.
@ = force in the connecting rod,

§ = thrust on the piston or guide bars,

x perpendicular distance between the connecting rod and the crankpin and

Let R = mass of the reciprocating parts.
Accelerating force, F = Ra,

The force Q at C is equivalent to a force ¢ at O and a coupie Qx tending to retard the rotation of
the crankshaft.

Thirust couple = § - QP

Now triangles Oba and POM are similar. Therefore,

ba S oM
Ob F  OP
or S-OP = F-OM
b M
Also o = E = 2
Ou o PM
d X o OF
4 - -
" om =~ %= gy
OM X
50 that =
PM OoF
by X
Hence T 2
o oP
and S OP=F .- OM=0 x

The full etfect on the engine frame of the inertia of the reciprocating mass is equivilent to the force F
along the line of strake at O and the clockwise couple of magnitude § - OP.
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24
Now f = Ra,. I:cosﬁ‘ + oz ]
n

Ra.cos28

= Ra,.cost +
n

= F,+F, (10.12)

where £, 1s the primary force, which represents the inertia force of reciprocating mass having simple harmonic
motion and F, is the secondary force, which represents the correction required to account for the obliquity
of the connecting rod.

The unbalanced force due to the reciprocating mass varies in magnitude but is constant in direction. A
single revolving mass cannot be used to balance a reciprocating mass, nor vice versa.

10.3.2 Partial Primary Balance

Consider the reciprocating engine mechanism shown in Fig.10.11. The primary unbalanced force,
F,, = Ra,.cos8

2
= Rw™rcost

= component parallel to the line of stroke of the centrifugal
force produced by an equal mass attached to and
revolving with the crankpin.

-—— -

S .
Rw?y cos 6 Beb cos @

{8
Fig.10.11 Partial balancing of primary unbalanced force
Let a balance muss B be placed along the line of crank at a radius b opposilte to the crankpin. Comparing

the horizontal components of forces, we have
Rwrcos8 = Bwlbcost

or Rr = Bb
Component of revolving mass perpendicular to the line of stroke = Bw?b sin 6@
This is the component of the balancing force which remains unbalanced.
It is usually preferable to make Bb = ¢ - Rr, where c < |.
Reduced value of unbalanced force parallel to line of stroke

= (I - ¢)Rw’rcos¢ (10.13)
Unbatanced force perpendicular to line of stroke = cRw>r sin 8 (10.14)
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For unbalanced force to be least, ¢ = (1.5
k] i hl 2, 0 0.5
Resubtant unbalanced force = Rew™r [{ I - ¢y cos™ @ 4 ¢ sin” 0] (10.15)
If the balance mass 8 hus 10 balance the revolving parts M as well as give a partial balance of the
reciprocating parts R, then
Bb=Mr+cRr ={M +cRI)r {10.16)

In practice. two balance masses. each egual to # _would be uitached to the crank webs. The graphical
representation of the various forces is shown in Fig. 10.12,

where  0a = primary disturbing force
ob
oc

centrifugal force due to the revolving balance mass

residual unbalanced force parallel to the line of stroke

oe = unbalanced force at right angles 10 the line of stroke

I

of = resultant unbalanced force on engine frame
Let od = oa/2. for 50% haluncing of reciprocating parts

Then oc = od andZcof =6,

Example 105

50 kg and mass of the revolving parts 40 kg at 150 mm radius. If two-third of the reciprocating parts and all
the revolving parts are to be balanced, find (1) the balance mass required at a radius of 400 mm, and (b) the
residual unbalanced force when the crank has rotated 60° trom top dead centre.

B Solution
(a) Bb = (M 4+ ¢R)yr
’ 2 % 5
048 = (4{)+ —2—)0,]5
or B = 275kg

) » + T, 0.5
R r [(] — ¢} CosT# + o sinT 9]

\ 0.5
' 240\° 2\, NN
= 30 x (2.*( ¥ — 1 x 0,15 | — =) cos~60° + ) x sin~ 60)°
60 _ 3 3

== 28469 N

(b} Restdual unbalanced torce
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10.4 PARTIAL BALANCING OF UNCOUPLED LOCOMOTIVES

In an uncoupled locomotive, two cylinders are placed symmetrically either inside or outside the frames. The

two cranks are at right angles to each other, as shown in Fig.10.13(a). In an uncoupled locomotive, the effort

is transmitted to one pair of wheels only, whereas in a coupled locomotive, the driving wheels are connected
. . - . 3 3 . .

to the leading and truiling wheel by an outside coupling rod. ¢ ~ 3 to 3 with two pairs of coupled wheels

b . .
and ¢ = £ for four cylinder locomotives.

-——-Planes of wheels - -—,
. - Planes ofcranks . '\

M,
A /
y
[ .70
ot M,
/bM S K
ar’ bL
g e
t By lICy
{b) Angular location of masses {c} Couple polygon (d) Force polygon

Fig.10.13 Uncoupled locomotive

The location of the cranks and balance masses is shown in Fig.10.13(b), couple polygon in Fig,10.13(c)
and force polygon in Fig.10.13(d). The couple polygon may be drawn by using the Table 10.7.

Table 10.7
Plane Mass Radius M -r  Distance from plane L Couple
M r / Mri
By by Brby 0 0
M r Mir {i Ca = Mirih

{3 Cy = Mariz

By by Buyby {3 Cy = Bybyls

=z w -
5
3
:3
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From Table 10.7,

. L1035
Cy = [C;‘ + Cﬁ.] = Bybpyla
C C
or By = —M: lana = ~A
byl B

If the mass of revolving parts to be balanced = M
and the mass of reciprocating parts to be balanced = R
Then total equivalent mass of revolving parts to be balanced.

M. Mr=M+¢R
Part of each balance mass required for reciprocating masses,
B
B, = cRY
M,
Then draw force polygon to determine By

Hammer blow The unbalanced force perpendicular to the hine of stroke due to balance mass B, at radius
b to balance the reciprocating parts only is equal 1o B,w"bsind. The maximum magnitude of this force is
known as hammer blow. This occurs at 8 = 90° and 270°.

Hammer biow = b‘,.mlb (10.17)
If P is the downward pressure on ruils due to dead load. Then

Net pressure = P + B w'b

———

Permissible speed, @ = l'll -—P— {10.18)
¥ Bh
Variation of tractive effort
The variation of tractive effort = (1 — ¢)Rew r[cos 6 + cos(90° + ¢)]
= (1 - ¢)Ra’rfcos® — sin 6]

For its value to be maximum, (d/dé)}{cosf —sinf) =0
or —stnf —cos® = 0
or tanfd = -1
or 6 = —45° and +135°
Maximum variation of tractive effort = :hw/i{l — ¢)Rwr (10.19}

Swaying couple The unbalanced part of the primary disturbing forces cause 4 horizontal swaying couple
to act on the locomotive owing 10 the distance o between the cylinder centres.
Taking moments about the engine centre line, the resultant unbalanced couple is:

5 o d
(1 -c)Rewer - 3 fcos @ — cos(90° + )]

. {
Swaying couple = (1 - ¢)Rwr - ('2 Jeosé + sinf|

This is maximum when ¢ = 43° and 225°

. . l —¢
Maximum swaying couple = + I:—-Ejl Rw’r - d

V2
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Example 10.6

An inside cylinder locomotive has its cylinder centre lines 0.8 m apart and has a stroke of 0.6 m. The rotating
masses are equivalent to t50 kg at the crank pin and the reciprocating masses per cylinder are 300 kg. The
wheel centre lines are 1.8 m apart. The cranks are at right angles. The whole of the rotating and 2/3rd of
the reciprocating masses are to be balanced by masses placed at a radius of 0.5 m. Find (a) the magnitude
and direction of the balancing masses. (b) the fluctuation in rail pressure under one wheel, {¢) the variation
of tractive effort. and (d) the magnitude of swuying couple at a crank speed of 300 rpm.

N Solution 200
Equivalent mass to be balanced = 150 + 2 x T =350 kg

Balancing masses

Let M4 and My be the balancing masses at angular locations 8,4 and 6y respectively. The position of
the planes 1s shown in Fig.10.14(a) and angular position of the masses in Fig. 10.14(b). Take A as the
reference plane.

350 kg
RP g3m
{+}
Cylinder Cylinder
Whes! Wheel ;
' ® L 0.3m @ B
.. 350 kg
————— = 05mMi=-08m -+ 0.5m - - vy
| I  Mp!
[ 18m - c
{a) Positicn of planes {b} Position of masses
&
1 f
Jd
L= - b
o
o' b

Scale : 1 cm = 40 kgm? Scale : 1 cm = 20 kgm

d) Force polygon
{c) Couple polygon @ poya

Fig.10.14
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Tabile 10.8

Plane Mass Radivs M .r  Distance from plane A Couple

M ¥ ! Mri
A Ma 05 05M4 0 0
B 350 0.3 105 0.5 525
C 350 0.3 105 i3 136.5
D

My 0.5 0.5Mp 1.8 09Mp

Now draw the couple polygon, as shown in Fig.10.14(c), from the data in column 6 of Table 10.8.
The closing side co represents the balancing couple.

09Mpy = vector¢’'o’ = 3.7 x 40 = 148

Draw oD parallel 1o ¢ ‘0" in Fig.10.14{b}. By measurement, 8p = 250°.
To find the balancing mass M 4. draw the force polygon, as shown in Fig.10.14{d). from the data in
column 4. The vector do represents the balancing force. '

05M, vector od = 4.1 x 20 = 82
or My = 164Kkg

]

To find the angle 84, draw 0A parallel to od in Fig.10.14(b). By measurement, 4 = 200°.

0.5
Analytically 0.9Mp = [(52.5)3+(136.5)3] — 146.248
M;) = 162.5 kg

36.5
& = 180° 4+ tan™! (] )

52.5
= 180° + 68.96° = 248.96° ccw
0.5
Similarly, 0.9M, = [(136.5)2—%(52.5)3} = 146.248
My = 162.5kg
8 180° + tan ! 52'5)
b 136.5

= [B0° + 21.03° = 201.03° counter-clockwise

(c) Each balance mass = 162.5 kg

162.5
= 81.25kg
0

Balance mass for the rotating masses = 150 x

2 300
Balance mass for the reciprocating masses, B = (E) . (ﬁ) x 162.5 = 92.86 kg

300\*
Fluctuation in the rail pressure or hammer blow = Bw’h = 92.86 x (ZJr * E) x 0.5
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= 45824 N
(d) Maximum variation of tractive etfort = +V2(1 — ORwr
2 300\°
:I:\/:(I 3)3[)(])( ( n % 60) 0
= 4873 N
] — +
fe) Maximum swaying couple = + |:_”'_2[j| Rov - dd
v

V2

| -3 .
=+ [— /_-”} x 3K L0)” x 0.3 x 0.8
= 416749 Nm

Example 10.7

The following data refer to an outside cylinder uncoupled locomotive:
Mass of rolating parts per cylinder = 350 kg
Mass of reciprocating parts per cylinder = 300 kg
Angle between cranks = 90°
Crank radius = 0.3 m
Cylinder centers = [.8 m
Radius of batance masses = 0.8 m
Wheel centers = 1.5 m

If whaole of the rotating and 2/3rd of the reciprocating parts are o be balanced in planes of the driving
wheels. find (1) magnitude and angular positions of balance masses. (b) speed in km/h at which the wheel
will Iift off the rails when the load on cach driving wheel is 30 kN, and the diameter of tread of driving wheels
15 1.8 m. and (¢} swaying couple at speed found in (b) above,

B Solution
(2) Equivalent mass of the rotating parts to be halanced per cylinder,

300
M =350 #2x — =550 kg

Let Mg and M be the balance masses, and Hg and #¢- their angular positions. Let B be the reference
plane. The position of planes is shown in Fig. 10.15¢a), and the position of nasses in Fig. 10.15(b).

Table 10.9

Plane Maxs Radius M .y Distance from plane B Couple

M r { Mri
A 550 0.3 165 -0.15 =24.95
B Mg 0.8 (L8My 0 0
C M¢ 0.8 L 8M 1.5 1.2Mc
D

550 0.3 165 1.65 272.25



3

-

3

Theory of Machines
D) 550 kg
RP a3m
Ve = +yg
Wheel  Cylinder Mg
Cylinder(2)  (8) Wheel © © (g". 08m 0.3m @
o (ﬁ,;h\(_)_'.__/'J \:
B e, 550 kg
[
". 08m
-~ 0.15 j=——- 1.5 * 0.15 |—— 1
-~ 18m - ——= e Mc
(a) Position of planes {b} Mass positions
d}
b
d
'
f
!
‘|. ‘i
: 0 .
£ S S| P
& -ﬂ—'o;
Scale: 1 cm = 50 kgm?

{c} Couple polygon

Fig.10.15

side do represents the balancing couple.

or

1L.2Me

Mc = 229.17 kg

Scale: 1 em = 50 kgm

(d) Force polygon

Draw the couple polygon, as shown in Fig.10.15(c), from the data in column 6 of Table 10.9. The closing

vectord 0’ = 5.5 x 50

Now draw OC parallel to d ‘o " in Fig.10.15(b) to find 8. By measurement, 8¢ = 84°.

column 4 of the above table,

or

0.8Mp

Mg = 231.25kg

To find the balancing mass Mg, draw the force polygon, as shown in Fig.10.15(d), from the data in

vector co = 3.7 x 50
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Now draw OB parallel to co in Fig.10.15(b) to find #4. By measurement, Hg = 186°.
5 0.5
Analytically. 126, = [(24,75)- + (272.25)3] =273.37
Mc = 2278ke
272.25
#, = tan~"* (—~ =tan"' 11 = 84.8° cw
24.75
Mz = Mc
2475
Bg = I80° + tan"! —
s . (2?2.25)
= 180° 4 5.2° = 185.2°
b) Mp = M = 2278k
" é:]dnci; m sforti iprocating parts. B = [ Y\ mMp = | 2307 L 2078 - g083k
il ass c1progcal arts. = —_— = 0= .
g procating parts 70 R T e 8
p °s 30 x (0> 1°°
v [Efi_bJ = ['82.33 x 0.8]
= 21,28 rad/s
D 3600
V= wx o= 21.28 x 0.9 x Toop = 6894 kavh
{¢) Maximum swaying couple =+ [l%] Re’r - d
1—-2/3 R
= +| " | 300{21.28)%0.3 x 1.8 = 17.293 kNm
V2

Example 10.8

The following data rafer to a two cylinder uncoupled locamotive:

Rotating mass per cylinder = 300 kg

Reciprocating mass per cylinder = 330 kg
{istance between the wheels = 1.4 m

Distance between the cylinder centres = 0.6 m
Diameter of treads of the driving wheels = 1.8 m
Crank radius = 0.3 m

Radius of centre of the balance mass = 0.6 m
Speed of the locomotive = 45 km/h

Angle between the cylinder cranks = 90°

Dead load of each wheel = 40 kN
Determine

(a) the balancing mass required in the planes of driving wheels if the complete revolving and 2/3rd of the

reciprocating masses are to be balanced
(b) swaying couple
(¢) variation in tractive effort

(d) maximum and minimum pressure on rails and

{e) maximum speed of locomotive without lifting the wheels from the rails.
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B Solution
(a) Mass to be balanced = 300 = 2 x 33(/3 = 520 kg

Taking 1 as the reference plane in Fig.10.16

e -Wheels —
RP- - Cylinders -,
., e 1dAm - - -
{a) (b
Fig.10.16 Two cylinder uncoupled locomotive
Table 10.10
Plane M r Mr g Mr My { Mril Mr! Mri
kg m deg  cosé sin ff xcosfl  xsind
Mo 520 0.3 156 0 156 0 0.4 624 62.4 0
M3 520 03 156 o0 0 156 1.0 156 156
M M D6 068, & 0.6M, 0.6M) 0 0 |
® COSH; X sinf
My My 06 0.6By (4 0.6M>  008My 14 0.84My 45 fi4 sin
XCosfy  xsinfy X costy  xsinfy

From Table 10.10,
Z M:ricosth = 156
> Mirising; = 156
> Mirid;cost; = 624
Y Mirdising, = 156

- B L)
[(Z Mirid; cose,-)h + (Z M;rid; sin b',)-] = Myrsly

, ,70.5
[(62.4)‘ n (156)“] — 0.84M,

168.02
My = =200 kg
) 0.84 g
tan Ay = _ZMf'rrf:' Sinﬁ,— B _{156] _

— Y Mird;cos®;,  —(62.4)
By = 180+ 682° = 248.2° ccw
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Since the numerator and denorminater are both negative, therefore ¢4 lies in the third quadrant.

a 2 s
M = [(Z Miricos 8 + Myry {:0504) + (Z My sint + Myrysin 94) :l
. 0.5
0.6M, = [[]56 + 0.6 x 200 x cos 24827 + (156 4+ 0.6 x 200 x s 248.2°)2]
03
— [(]IL43)2+(44,58}“:| = 120.02
M| = 200 kg
— (3" Mirisin6; + Marssinfy) —44 58
tanfly = = - - =4
—(3-Miricost; + Myrgcosfy)  —111.43
B = IR0 4+ 21.8° = 20} 8"

Since the numerator and denominator are bath negative, therefore 8 lies in the third quadrant.

1000
(b) : v =45 x ——— = 12.5mfy
3600

1 12.5 _
w = — = ——- = 13,889 rad/s
r 0.9

Swaying couple = [—] x Rrol

1 —2/3 3
= | ——— | x 300 x (1.3 x {13.889)° % 0.6
V2
= 2455.3 Nm
fcy Variation in tractive effort = :i:\/ﬁ[l — (‘,\Rcuzr
' 2
= iﬁ(i - i) x 300 x (13.889) x 0.3

= +8184.2 N
3
() Balance mass for the reciprocating parts only, Ry = 200 x 3 X ﬁ] = 84.6 kg
Hammer blow = Jr'i’|bw2 =&d.6 x 1.6 x (13.889)"‘ =9791.8 N
Deud weight = 40 kN
Maximum pressure on rails = 40,000 + 9791.8 = 49791.8 N
Minimum pressure on rails = 40,000 — 9791.8 = 30208.2 N
(e} Let w) be the speed, then 84.6 x 0.6 x wl = 40.000

m = 2807 rad/s

2807 0.9 3600 90.95 kmvh
v = 2807 x 1. xl{}()(]“ 95

10.5 COUPLED LOCOMOTIVES

In & coupled locomative, the driving wheels are connected to the leading and trailing wheels by an outside
coupling rod. as shown in Fig. 10.17, By such an arrangement, a greater portion of the engine mass is utilised
for tractive purposes. The coupling rod cranks are placed diametrically opposite to the adjacent driving cranks.
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The coupling rods together with cranks and pins may be treated as rotating masses and completely balanced
by masses in the respective wheels. Therefore, in 2 coupled locomotive. the rotating and reciprocating masses
must be treaied separaicly and the balanced masses for the two systems are then suitably combined in the
wheel, The hammer blow may also be considerubly reduced,

Coupling rod - Wheels

Fig.10.17 Coupled locom. . -

Figure 10.18(a) shows the arrangement of coupling rods. wheels and cylinders of a coupled locomotive,
Fig.10.18(b) the angular position of cranks and coupling pin, Fig.10.18(c) the couple polygon when wheel
E is driving and Fig.10.18(d) the force polygon when wheel 8 is the driver.

C
- Gouplingrod . - . Q
Wheel - . X
o - _ g
o Cylinder ' : o
1y 1 2 tEon2 > -
OO
Al B c D gl F d
| X
f D
- a - b St - e - b - - a -
{a) position of planes (b} Angular position of cranks and
coupling pins
AA
; F
’.’ * yC
i £ — A
(.r AC .
Ey o
i E,
K B
D D
{c} Couple polygon: driving wheel £ {d} Force polygon: driving wheel B

Fig.10.18 Coupled locomotive
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Example 10.9

The fotlowing data refer to a two cylinder locomative with two coupled wheels on each side:

Length of stroke = 600 mm; Mass of reciprocating parts = 280 kg

Mass of revolving parls = 200 kg:  Mass of each coupling rod = 240 kg

Radius of centre of coupling rod pin == 250 mm

Distunce between cylinders = 0.6 m

Distance between wheels = 1.5 m

Distance between coupling rods = 1.8 m

The main cranks are at right angles and the coupling rod pins are at [80° to their respective main cranks.
The balance masses are 10 be placed in the wheels at a mean radius of 670 mm in order 1o balance the complete
revolving and 3/4th of the reciprocating masses. The balance mass for the reciprocating masses is divided
equally between the driving wheels and the coupled wheels. Find (a) the magnitude and angular positions of
the masses required for the driving and trailing wheels. and tb) the hammer blow at 120 km/h, if the wheels
are 1.8 m diameter.

B Solution

(a) The position of planes for the driving wheels 8 and £. cylinders C and D, and coupling rods A and F,
are shown in Fig.10.19(a). The angular position of cranks € and D and coupling pins A and F are shown in
Fig.10.19(h).

Mass of the reciprocating parts per cylinder to be balanced = 3 _T =210kg

-~

210
2

t

Mass to be balanced for driving wheels and trailing wheels = = 105 kg

Masses to be balanced for cach driving wheel:

I. Half of the mass of coupling rod = @ = [20kgor My = M; = 120kg

2. Complete the revolving mass (200 kg; and 3/4th the mass of reciprocaling parts (105 kg).
or Mg = Mp =200+ 105 = 305 kg

Driving wheels  Let My and M be the balance masses placed in the driving wheels B and E. respectively
in plane of 8 as the reference plane.

Table 10.11

Plane  Mass Radius M .+ Distance from plane B Couple

M. kg r.om kgm f.m Mri, kgm?
A 120 0.25 30.0 -0.15 —4.5
B My 067 0.67My 0 0
C 305 0.30 915 0.45 41.175
D 305 0.30 91.5 1.05 96.075
E Mg 067 0.67Mp 1.5 L.O0SM g
F

120 0.25 30.0 1.65 495
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RP
L - Coupling rods - - - @ /'X

X -Wheels . o 03m
- Cylinders, AR
‘A B *c DY e NF
@ 0.25m |~ 03m @
A
, 045 ), 06 ), 045 : 7 45°(0.25 m
. o
< 015« - 15 ~ 015 = )
_ i : [ (b) Position of masses
™ e e e 18 m- -- - - - . f ¢
{a) Position of pianes
3
a
l”l - C'
Sof
y ]
. _ ¢
o /
< d

Scale: 1 em = 20 kgm?
Scale: 1 em = 20 kgm?

{c} Couple polygon (d) Force polygon
Fig.10.18
Draw the couple polygon trom the data in column 6 of Table 10.11, as shown in Fig. 10.19(¢).
L00SAM; = vectora ' o' = 3.3 x 20
or Mg 65.67 kg
and P = 45°

#

Now draw the force polygon trom the data in coluimn 4 of 1the Table 10.11, as shown in Fig. 10.19(d}.

0.67My = vecloreo = 22 x 2}
63.67 kg
and By = 45°

or Mg

Trailing wheels The following masses are to be balanced tor each trailing wheel:
1. Half of the mass of the coupling rod. M4 = My = 120 ke

2. Mass of the reciprocating parts. M = Mp = 105 kg
Let Mg and Mg be the balanced masses placed in the trailing wheels. We take wheel £ ax the refer-

ence plane.
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Table 10.12

Plane Mass  Radius M.r Distance from plane B Couple

Mkg r.m kgnt f.m Mrl, kgm?®
A 120 0.25 30.0 -0.15 —4.5
B Mg 0.67 0.67Mg 0 0
C {IK) (.30 35 0.45 14.175
D 105 0.30 315 1.05 33.075
E Mg 0.67  O.67Mg 1.5 1.005M ¢
F

120 (.25 30.0 L.65 49.5

Draw the couple polygon from the data in column 6 from Table 10.12, as shown in Fig.10.20{a).

1.005M; = vectora’o” = 2.55 x 10
or Mg = 2537 kg
and Hp = 41°

Scale: 1 cm = 10 kgm?

e
(a) Couple polygon Scale: 1 em = 10 kgm

{b) Force polygon

Fig.10.20

Now draw the force polygon from the data in column 4 from the above table, as shown in Fig.10.20(h).

0.67Mpz = vector eo= 1.7 x 10
or Mp = 2537 kg
and g = 42°

The balance masses in all the four wheels are shown in Fig. 10.21.
(b) To find the hammer blow, we find the balance mass required tor the reciprocating masses only.
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L 25.37 kg
45%
65.8 kg 2537kyg  B58kg
(a) Driving wheel £ (b} Training wheel £ {c) Driving whee! B {d) Training wheel B

Fig.10.21 Location and magnitude of balance masses

Table 10.13

Plane Mass  Radius M -r  Distance trom plane B Couple

M. kg r.m kgm fLom Mri kgm®
B Mg 0.607 0.67TMg 0 0
C 105 0.30 315 0.45 14.175
D 105 0.30 315 1.05 33.075
E Mg 067 067Mp 1.5 [.O05M g

Draw the couple polygon from the data in column 6 of Table 10.13. as shown in Fig.10.22,

1L.O05My = vector ¢'o= 3.6 x 10

or Mg = 358kg
Linear speed of the wheel = 120 km/h = 33.33 mys
Diameter of wheel, D=18m
. 2 3333
Angular speed of wheel, w= = 2 x T 37 rad/s
Hammer blow = xBwh = 358 x (37)° x 0.67 = 32836.8 N
-7 CI
.-" ’
o - d

Scale : 1 cm = 10 kgm?

Fig.10.22 Couple polygon

Exampile 10.10

The following data refer to a four-coupled wheel locomotive with 1wa inside cylinders, as shown in Fig.10.23:
Reciprocating mass per cylinder = 300 kg
Revolving mass per cylinder = 250 kg
Diameter of the driving wheel = | 9 m
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Revolving parts for each coupling rod crank = 120 kg
Engine crank radius = 0.3 m

Coupling rod crank radius = 0.25 m

RP S - - Coupling rods R

R Driving wheels e e e e e e

Cylinders

|

-— - 0B m -

- 1.6m - -

- S2m e -
{a) {b)

Fig.10.23 Four-coupled wheel locomotive

Distance of centre of balance mass in the planes of the driving wheels from the axle centre = 0.75 m
Angle between the engine cranks = 90°
Angle between the coupling rod crank wirh adjacent engine crank = 180°
The balance mass required for the reciprocating parts is equally divided between each pair of coupied
wheels. Determine
{a) the magnitude and position of the balance mass required to balance 2/3rd of reciprocating and the complete
revalving parts.
{h) The hammer blow and
{¢) The maximum variation of tractive force when the locomotive speed 1s 75 kinfh.

8 Solution

Leading wheels
Balance mass = 250 4 0.5 »x 2/3 x 300 = 350 kg
Take 2 as reference plane with 61 = 0°.
From Table 10.3,

Z M,'."; CGSG,‘ =75

Z M;r; siné;

Z Mirilcosé, = 385

75

t

ZM,—r,-.-‘,- sing; = 61.5

A 405
[(Z Miridi cost; )_ -+ (Z Mirid; sin Hf)v] ﬁ

Msrsls
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bl al ‘I-S
[(58.5)“ n {61_5)‘]
Ms

tan A

tls

Plane M r Mr fl
kg m deg

1 120 0.25 30 180
0.75M>  th

350 03 1K) 0
4 350 03 105 a0
Ms 075 (L75Ms< {1

6 120 0.25 30 270

1.2Ms
84,88
— 7073 kg
ﬁ!’_k‘mf{’ _ 615 (1.0513
= 3 Ml cos —58.5

180° 4+ 46.43° = 226.43° ccw

Table 10.13

scost Mrsiné { Mri Mri

0 =30 1.8 54 0

Mri
cos sin &
=30 0 0.2 -6
0.75M> 0.75M> 0 0 0
X COs A x $1n f
105 0 0.5 52.5 52.5 0
0 105 1.1 115.5 0 115.5
0.75M5 0.75Ms 1.6 1.2Ms 1.2M5 1.2Ms5
X CON g * s1n Hs * CORfls X sinfs
-54

Since the numerator and denoeminator are both negative, therefore 85 tes in the third quadrant.

5705
Mars = [(Z Mricos 8y + Msrs cos 95) + (Z M, r; sind; + Msrssin 95) ]

2

¥ - n'ﬁ
0.75M> = [[75 4+ 7073 x .75 % cox 226.43%)7 + (75 + 70.73 x 0.75 x sin 22643"}2]

s 0.5
[(38.43)‘ n (36.56}3} — 53.046

M, = 073 kg
tan & - (Z Mir; sinf; + Msrs Sil‘l()_q)
i b =
) - (Z: Miri cosf; + Msrscosfs)
—36.56 _
= =0.95134
—38.43
0 = 180° + 43.57° = 223.57°

Since the numerator and denominator are both negative, therefore &2 lies in the third guadrant,

Trailing wheels Balance mass = 0.5 x 2 x
Take 2 as reference plane with 63 = 0°.

0 = 100 kg

3
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Table 10.14
Plane M r My a Mroosfl Mrsing { Mri Mri Mrf
kg m deg R Cosf % sin @
I 120 025 30 180 -30 0 -0.2 -6 6
2 M. 075 0.75M. Bn (L75M> 0.75M> 0 0 0
X COS B X %in -
3 100 0.3 30 0 30 0 0.5 15 15 )
4 100 03 30 90 0 30 1.1 33 0 33
Ms 075 0.75Ms  Bs 0.75Ms 0.75M5 16 L.2Ms 1.2M5 1.2M5
* (0% s xsinfis X Cosfls X sinfs
6 120 0.25 30 270 0 -30 1.8 54 i —54
From Table 1{.14,
Z Mrcost;, = 0
Z M rising;, = 0
> Miridicosty = 21
> Miridisint, = =21
5 5905
[(Z M;rid; cos 8,-) + (Z Mirid; sin U;-) ] = Msrsls
N S5
[('zlr + (—21)-] = 1.2Ms
29 608
Mf. = -— = 24?5 kg
1.2
anfs = _—Z M;r: i sin6; - —{(-21 _
=3 Mri;cosé, -2
fs = 180° - 45° = 135 ccw

Since the numerator is positive and denominator is negative, therefore 85 lies in the second quadrant.

By symmetry. M-
tan

B

24.75 kg

360° — 457 = 315°

Since the numerator is negative and denominator is positive, therefore #- lies in the fourth quadrant.

(b) v

o

]00”—-7083 /
x%m_... m/s

20.83
5 = 21.93 rad/s

75

vy = ——
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Neglecting M| and M. we hinc

i 2 JWS
M-

, 405
[15- n 33-] = 36.249

30.2 kg

Msbo™ =302 x 0.75 x (21.93)7 = 10893 N

Hammer blow

(¢) Maximum variation in tractive effort = :l:x/F2(i — eYRwr
= V201 = 2/3) x 300 x (21.93)% x 0.3 = 220404 N

10.6 MULTI-CYLINDER IN-LINE ENGINES

In a multi-cylinder in-line engine, the cylinder centre iines lie in the same plane and on the same side of the
crankshaft centre line. as shown in Fig.10.24.

Fig.10.24 Multi-cylinder inline engine

10.6.1 Primary Balancing
The conditions to be satisfied for the primary balancing are:

1. The algebraic sum of the primary forces should be equal to zero, that is. the primary force polygon
must ¢lose.

Z Rew*rcost) = 0) (10.20a)

I3

The algebraic sum of the primary couples about any point in the piane of the forces must be equal to zero.
thit is, the primary couple polygon must ¢losc.

> Retracosh =0 (10.20b)
where ¢ = distance of the plane of rotation of the crank from a parallel reference plane.
The graphical construction for the balancing of primary forces is represented in Fig. 10.25¢a) and (b).
ef. fg. gh. eh = primary forces
4

angle turned through by crankshaft. clockwise
= angle turned through by line of stroke, cow. i.e. PQ goes to PS.
ki, ml, mn, nk, = primary forces whose resultant is kk; .

For balance of primary forces d must coincide with ¢. In a similar way, the primary couples can only be
balanced if the couple polygon for the corresponding centrifugal forees is closed.

Hence. if a system of recipracating masses is to be in primary halance. the system of reciprocating masses,
which is obtained by substituting an equal revolving mass at the crankpin for each reciprocating mass. must
be balanced.
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Q
b
g
a f
P h
- e
© d
s Ik m Kk P
{a) {b) Force polygon

Fig.10.25 Graphical method
10.6.2 Secondary Balancing
The conditions to be satisfied for the seconduary balancing are:

[. The algebraic sum of the secondary forces should be equal to zero. that is the secondary force polygon
must close.

3 R2wY (%)Cos 2 =10 (10.21a)

2. The algebraic sum of the secondary couples about any point in the plane of the forces must be equal to
zero, that is the secondary couple polygon must close.

3 RCw)? (i;)a 0820 =0 (10.21b)

where « is the distance of the plane of rotation of the crank from a paralicl reference plane.

;
— 10.21
4n (10.21¢)

Speed = 2w {10.21d)

Imaginary crank length =
Angle made by imaginary secondary crank with inner dead centre always = 24, The actual and imaginary

cranks are shown in Fig.10.26.

Imaginary crank

-~ == Line of stroke

Fy e -

Fig.10.26 Actual and imaginary cranks
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Example 10.11

A four crank engine has two outer cranks set at 120° to each other, and their reciprocating masses are each
400kg. The distance between the planes of rotation of adjacent cranks are 450 mm, 750 mm., and 600 mm. If
the engine is to be in complete primary balance. find the reciprocating mass and the relative angular position
for each of the inner cranks.

If the length of each crank is 300 mm. length of each connecting rod is 1.2 m and the speed of rotation is
240 rpm, what is the maximum secondary unbalanced force?

B Solution
Reciprocating masses:

Let M and M be the reciprocaling masses for inner cranks 2 and 3: @» and 05 their angular locations
respectively. The position of planes and primary crank positions is shown in Fig.10.27(a) and {b) respectively.

-—| 450 |- - 750 ~ 600 |«

{a} Position of planes {b} Primary crank positions

4

1 o
scale: 1 cm = 40 kgm? scale: 1 cm = 150 kgm

{¢} Primary couple palygon {d) Primary force polygon
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{e) Secondary crank positions
scale: 1 em = 40 kgm

{f} Secondary force diagram

Fig.10.27
Table 10.15
Plane Mass Radius M .r  Distance from plane 2 Couple
Mkg r.m kgm f,m Mrl, kgm?
l 400 0.3 120 —0.45 —54.0
2 M, 03 03M, - 0 0
3 M3 0.3 0.3M5 0.75 0.225M3
4

400 03 120 1.35 162.0

since the engine 1s to be in complete primary balance, therefore, the primary couple and force polygons must
close. The primary couple polygon is shown in Fig. 10.27(c). drawn from the data in column 6 of Table 10.15.
0.225M3; = vector0'd =49 cm = 196

or Mi = 871 kg

and Hy = 314°

The force polygon is drawn in Fig. 10.24(d). from the data in column 4.

(L3M> = vector 03 = 284
or M; = 947 kg
and H; = 16R°

Secondary unbalanced force The secondary crunks at twice the angle are shown in Fig, 10.27(e). The
secondary force pelygon is drawn in Fig.10.27(f). The closing side of the polygoen gives the unbalanced
secondary force.

Vil
582w” = 582 % Sl = 91.06 kN

Maximum unbalanced secondary force =
" 1.2/0.3



390 Thaory of Machines

10.6.3 In-line Two Cylinder Engine

Consider line diagram of a two cylinder in-line engine shown in Fig.10.28. The cranks are 180° apart and
have equat reciprocating masses. Taking a planc through the centre line as the reference plane. we have

Primary force, Fp = Rro” [cos# + cos(180° + ) =10
Primary couple, Cp = Rro® [0.5¢ cos tr - .54 cos(180° + 6)]
= Rro‘acost (10.224)
(Cpluae = Rrora at 6=0° and 180° (10.22b)
. . Rrw”
Secondary force, F, = -- —) {cos 26 + cos 2(180° + )]
. n
dRrw?
= ( rw ) cos 24 (10.23a)
"
IRy 2
(Fomax = O ar 8 =0°,90°, 180°, 270° (10.23b)
n
Rrw?
Secondary couple, Co =1 [0.5a cos 28 — 0.5a cos 2(180° + 8)]
1
=0
RP 2
18??%.?’,——150
a - a -
- 2. . g O
{a) (b}
Fig.10.28 In-line two cylinder engine
The force and couple polygons are shown in Fig.10.29() to (d).
{2) Rr e
on

Rro?

) . -er2g-
Rroa 1
@ /{1) o Rrw? 2
g . :

-

(2)

(i} Force polygon

{a) Primary cranks

{ii) Couple polygon

(2)
2Rre?

7
R”,,Qz---COS 8 = cos2g

{i} Force polygon

{ii) Couple palygon

{b} Secondary cranks

Fig.10.29



Balancing 391

10.6.4 In-line Four Cylinder Four-stroke Engine
A line diagram of a four cylinder engine is shown in Fig.10.30. The forces and couples are;

RP
4 a . -
- a - - f B 2 a
i
2
Fig.10.30
Primary force, F, = Rro” [cos® 4+ cos(180° + £y 4+ cos(180° + B) + cosd) =0
Primary couple, C, = Rro [1.5a cos @ + 0.5a cos(180° + 0}
—0.5a cos(I80° + 8) — 1.5acos@] =10
"Rrow”
Secondary force, F, = ( [cos 26 + cos2(180° + )
"
—cos 2{180° + &) + cos 28]
"ARrw?
= ( cos 26 (10.25a)
H
Fpm = 48F 5 at 6= 0°,00°, 180°, 270° (10.25b)
H
2
Secondary couple, O, = (Rr w) [1.5a cos 26 4+ 0.5aq cos 2{180° + &)
n

{15 cos 2(180° +6) — 1.3gcos 28] =0

The force and couple polygons are shown in Fig.10.31(a) to {d}.

R!rr!2

28
5 1 Rrw 5

2 / 1Rrw s

3
-——-45:“’ cos ¢
{i) Force paligon {il) Couple paligon {i) Force poligon (i} Coupie poligon
(a) Pimary cranks {b) Secondary cranks

Fig.10.31
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Example 10.12

tn a marine oil engine. the cranks of four cylinders are arranged at angular disptacements of 90°. The speed
of the engine is 105 rpm and the mass of reciprocating parts tor each cylinder is 850 kg. Each crank is 0.4
m jong. The outer cranks are 3 m apart and the inner cranks are 1.2 m apart and are placed symmetrically
between the outer cranks.

Find the firing order of the cylinders for the best primary balancing of reciprocating parts and also the
maximum unbalanced primary couple for this arrangement.

8 Solution
)5
= 2?{ x m = l(]996 ra.d;'fh'

L

r = 04m

The primary forces are always balunced as cranks are arranged at an angular displacement of 90° to each
other. The primary couples need to be investigated. The position of cranks 15 as shown in Fig.10.32.

Outer cranks

Inner cranks

() 1

2 3 4
2
- 12m == 09m =
3
- 1 T TR T ISuEp .
{a) Crank position {b} Crank arrangement
Fig.10.32

The possible firing orders arg: 1234, 1243, 1423, (324, 1342, 1432, as shown in Table 10.17.
The disturbing force along the axis of the cylinder = Mrw= cos 6
Let K = Mrw? = 850 x 0.4 x (10.996)" = 41107 N, as shown in Table 10.16.

Total disturbing force
1

= Z K cos(f + ay)
i=I
where oy = angle between the reference erank and the crank considered.

Table 10.18

Planc of eylinder M Mr K = Mrw®  Arm length ! Couple K/

l B30 340 41107 U 0

2 850 340 41107 0.9 09K
3 850 340 41107 2.1 21K
4 850 340 41107 3 K




Table 1017

Disposition  Crank positions  Primary couple

Balancing

Resultant primary

of cranks polygon couple

1234 [3-092+ 2.1 x K
= 297K

1243 [21-092+ 32" x k
=3231K

1423 (3-212 409" x K
= 1.273K

(324 [A-212+ 091" x &
—1.273K

1342 [0 - 09?2 + 3"« K
= 3.231K

1432 [3-092+ 2.0 x &k

Least value of primary couple = 1.273K

=29K

= 1.273 x 41107 = 52329 Nm

Best firing order is 1423 and 1324.

10.7 BALANCING OF RADIAL ENGINES

10.7.1 Direct and Reverse Cranks Method

393

This methed is used to balance radial or V-engines. in which connecting rods are connected to & common
crank, as shown in Fig.1€.33. Since the plane ol various cranks is the same, therefore, there is no unbalanced

primary or secondary couple.

Direct crank

- Revarse crank

Fig.10.33 Direct and reverse crank method.

Let the direct crank OC rotate uniformly at e rad/s speed in a clockwise direction. Then the reverse crank
OC * will rotate in the cow direction. The inverse crank OC 7 is the mirror image of the direct crank OC.
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Primary forces
Now the primary force, F, = R’ r cos )

This force is equal to the component of the centrifugal force along the line of stroke, produced by a mass
R placed at the crankpin C. Let us suppose that the mass R is divided into two equal parts, each equal 10
R/2. Ttis assumed that R/2 is fixed at the dircct crankpin C and the other half R/2 is fixed at the reverse
crankpin C°.

Centrifugal force acting on the primary direct and reverse crankpins = 0.5Rew"r

Component of the centrifugal force on the direct crank acting along the line of stroke from Oto P,

Foa = 0.5Rw"r cos
Component of the centrifugal force on the reverse crank acting along the line of stroke from Oto P
Fo =03 Ra’rcosd
Total component of the centrifugal force atong the line of stroke
Fo=Fpqa+ Fpp = R rcosd (10.26)

Which is the primary force itseff. Hence. for primary force effects. the mass of the reciprocating parts at
£ may be replaced by two masses at crankpins € and C ', each of mass R/2 at radii equal to r.

Secondary forces

. 5 Cas 26
The secondary force, F,=Rwr—- {10.27)
1
In the similar way as discussed for the primary force, the secondary force effect may be taken into account
by dividing the mass R into two equal parts and placing it at the imaginary crankpins at radii in-

Example 10,13

The three cylinders of an air compressor have their axes 120° to one another and their connecting rods are
coupled to a common crank. The stroke is F00 mm and the length of each connecting rod is 150 mm. The
mass of the reciprocating parts per cylinder is 2 kg. Find the maximum primary and secondary forces acting
on the frame of the compressor when running at 3000 rpm.

B  Solution
The position of three cylinders is shown in Fig.10.34(a). with the common crank along the inner dead centre
of cylinder 1.

Primary forces
The primary direct and reverse crank positions are shown in Fig.10.34(b),

1. Since # = 0” for cylinder i, both the primary direct and reverse cranks will coincide with the common
crank,

I

Since # = £120° for cylinder 2. the primary direct crank is 120° clockwise and the primary reverse crank
is F20° counter-clockwise from the line of stroke of cylinder 2.

3. Since § = £240° for cylinder 3. the primary direct crank is 240° clockwise and primary reverse crank is
240° counter-clockwise from the line of stroke of cylinder 3.
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{1

(1) M2

(2)8 M2
(3)e M2

{a) Position of cylinders {i} Direct primary crank
(b}
Mi2
(1) M2
3)
M2
M2 M2 Mi2
(2)
{ii) Reverse primary cranks {i) Direct secondary cranks (i} Reverse secondary cranks

{b} (c)

Fig.10.34 Direct and reverse crank method
From Fig.10.34 (b-ii). we find that the primary reverse cranks form a balanced system. Therefore, there

is no unbalanced primary force due to the reverse crunks. From Fig.10.34 (b-i), we find that the resultant
primary force is equivalent to the centrifugal force of a mass 1.5 M attached 10 the end of the crank.

3000 \°
) 0.05
0

The maximum primary force may be halanced by a mass attached diametrically oppesite o the crank pio
and rotating with the crank, of magnitude By at radius £y, such that

Maximum primary force = LSMw’r

].5x2(2;rr P

14804.4 N

Biby = 1.5Mr =15x2x005=0.15Nm
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Secondary force
The secondary direct and reverse crank positions arc shown in Fig.10.34(c).

1.

Tad

Since 26 = 0° for cylinder 1. both the secondary direct and reverse cranks will coincide with the com-
mon crank.

- Since 20 = £240" for cylinder 2, the secondary direct crank is 240° clockwise and the secondary reverse

crank is 240° counter-clockwise from the line of stroke of cylinder 2.

Since 26 = £480° for cylinder 3, the secondary direct crank is 480° or 120° clockwise and secandary
reverse crank is 480° or 120° counter-clockwise from the line of stroke of cylinder 3.
The resultant secondary torce = 1.5 M attached to a crank at radius ¥ /4n rotating at 2w speed.

Maximum secondary force

il

LSM (2’ (;1’? )

]

3000\° 7 0.05
= 15 x2[4m » — —
60 4%3

= 49348 N

The maximum secondary force can be balanced by a mass B> at radius b> attached diametrically opposite

to the crank pin, and rotating ccw at twice the speed. such that

Baby = 1.5M % L
4n

t.05

X 3

= 1.5 x2x =0.0125 Nm

10.8 BALANCING OF V-ENGINES

Consider a symmetrical two cylinder V-engine, as shown in Fig.10.35. The common crank OC is driven by
two connecting rods PC and QC. The lines of stroke OP and OG are inclined to the vertical OY, at an angle o,

Cylinder 1--

- Cylinger 2

Fig.10.35 V-engine

Inertia force due to the reciprocating parts of cylinder 1. along the ling of stroke

- cos 2w — )
= Rwr|cosfee — By 4+ — -~
"
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Inentii force due to the reciprocating parts ot cylinder 2, along the line of siroke

- cos 2w + #)
= Rowr|eosie+60) 4 —mno——-

n
The plane of cranks is the same. therefore, there are no primary or secondary couples.
Primary forces Primary force of cylinder 1 acting along the line of stroke
o1 = Rotreosta — 0)

Component of Fp; along the vertical line OY = Fpj coser
A
= Rwrcosie —Hicose

Component of Fp along the horizontal line OX = Fpy sina

l .
Reor cosier — ) sin

Similarly, for the cylinder 2, we have Fpy = Rw’r cosla + 6)
Component of F;> along the vertical line QY = Fcosa

— Rarr cosier + ycos
Component of £j,» along the horizontal line OX" = Fasine

= Re'reostu + ) sina
Total component of primary force along the vertical line QY

Fo. = Rmzrlcns{:r — M+ coslo + 0)]cosa
= 2R r cos® ¢ cos f
Total compeonent of primary force along the horizontal line OX
Fpp = R rlcostar — #) — cos{o + €] sin«
= 2R rsin” asin®
0.5
Resultant primary force, F, = {Fﬁ,, + Fﬁfr]
ki kl ] . . ¥ (}'5
= 2Rwr [(cos“ @ Ccosd)” + (st o sin 9]'] (10.28)

For o = 45°, we have
Fp = Ro’r (10.29)

Secondary forces Seccondary furce of eylinder | acting along the line of stroke

A Ccos Mo —
For = Rwr .-

i
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Component of Fy) along the vertical line OY = F,jcosw
. cosXa — )
= Rwr ———— vose
H
Component of F,| along the horizontal tine OX = F,|sine
o cos2ie—-6)
= Rwr ————— .sinw
T
Similarly, for the cylinder 2, we have ‘ . cos 2u +8)
Foo=Rorr———
1]
Component of F,» along the ventical line O = F,>cose
- cos 2w+ 0)
= Rewr. - — - COS O
n
Component of F,» along the horizontal line OX’ = £,3sinw
5 cos U+ 8)
= Rewr—- - - Sin o
n
Total component of secondary force along the vertical line OY
} » ) oS
Foo = Rwrlcos2iv — 8 4+ cos 2o + &)
1
A F
= 2Rw" (—) COS @ COs 2o cos 20
1
Total component of secondary force along the honzontal line OX
sina

Fop = Rrr):r{cos 2o — 8) — cow2(a + 6)]——-
"
LA : . .
= 2Rw" ( ) sin e sin 2a s1n 26
i
. Ll a t]'_\
Resultant secondary foree, £, = [F;,. + F_;,r]

r

i

A
2!«.;3( )[(cosacoslacos?f)]2+(sinasin’2rxsin?,9)2] (10.30)

n

For o = 45°, we have \/).
z Y r
F, = (7) Raw (—) (10.31)

T
Exampie 10.14

A V-twin engine has the cylinder axes at right angles and the connecting rods operate a common crank. The
reciprocating mass per cylinder is 10 kg and the crank radius is 80 mm. The length of connecting rod is 0.4
m. Show that the engine miay be balanced for primary forces by means of a revolving balance mass.

If the engine speed is 60K rpm, what is the value of maximum resultant secondary force?

B Solution
0.4

Here v =45 1n=_—=~
.08

600
and =27 x — = 62.83 rad/s
o
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Resultant primary force, Fro= 2Rw?r [(cos2 @ cos 6) + (sin” & sin 6‘)2]“'5

Since the resultant primary force Rew?r is the centrifugal force of a mass R at the crank pin radius rotating
at speed o, the engine may be balanced by a rotating balance mass.

Maximum resultant secondary force,

4 ¢ r ) ) . ) 3 1.3
F, = 2Rw" (—) [[cosacos 20c0826)° + (sina sin 2w sin 26) ]
H
For @ =45°, F, = 2R’ (5)sin 26
n

For a maximum value sin 26 = £1, or # = 45° and 135°.

Maximum resultant secondary force,

' > 0.0 4
(Fodmm = V2 (R%) ol =2 (10 x TS) (62.83)? = §93.24 N

Exercises

1. A rotating shaft carries four radial masses A = § kg, B, C = 6 kg, and D = § kg. The mass centres are
30 mm, 40 mm, 40 mm and 50 mm respectively from the axis of the shaft. The axial distance between
the planes of rotation of A and B is 400 mm and between B and G is 500 mm. The masses A and C are at
right angies to each other. Find for a complete balunce, (a) the angle of the masses 8 and D from mass
A, (b} the axial distance between the planes of rotation of C and D and (c) the magnitude of mass B.

2 A rotating shaft carries four unbalanced masses 20 kg, 15 kg, 18 kg and 12 kg at radii 50 mm, 60 mm,
70 mm and 60 mm respectively. The second, third and fourth masses revolve in planes 100 mm, 150 mm
and 300 mm respectively measured from the plane of first mass and at angular locations of 60°, 120°
and 280° respectively measured clockwise from the first mass, The shaft is dynamically balanced by two
masses, both located at 50 mm radii and revolving in planes midway between those of first and second
masses and midway between those of third and fourth masses. Determine graphically the magnitudes of
the masses and their angular positions.

3 A shaft of span 3 m between two bearings carries two masses of 15 kg and 30 kg acting at the extremities
of the arms 0.5 m and 0.6 m respectively. The planes in which these masses rotate are 1 m and 2 m
respectively from the left end bearing. The angle between the arms is 60°, The speed of rotation of the
shaft is 240 rpm. If the masses are balunced by two counter masses rotating with the shaft acting at radij
of 0.25 m and placed at 0.3 m from each bearing centre, determine the magnitude of the two balance
masses and their orientation with respect to the 135 kg mass.

4 A 4 m long shaft carries three pulleys, two at its ends and the third at the midpoint. The two end pulleys
“has mass of 80 kg and 40 kg and their centre of gravity are 3 mm and 5 mm respectively from the axis
of the shaft. The middle pulley mass is 50 kg and its centre of gravity is 8 mm from the shaft axis. The
pulleys are keyed to the shaft and the assembly is in static balance. The shaft rotates at 300 rpm in two
bearings 2.3 m apant with equal overhang on either side. Determine (a) the relative angular positions of
the pulleys, and (b) dynamic reactions at the two bearings.

5 A single cylinder horizontal engine runs at 120 rpm with a stroke of 400 mm. The mass of the revolving
parts assumed concentrated at the crankpin is 100 kg and mass of the reciprocating parts is 150 kg.
Determine the magnitude of the balancing mass to be placed opposite to the crank at a radius of 150 mm
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10

11

12

which is equivalent to all the revolving and 2/3rd of the reciprocating parts. If the crank turns 30° from
the inner dead centre. find the magnitude of the unbalanced lorce due 1o the balancing mass.

A single cylinder engine runs at 240 rpm and has a stroke of 200 mm. The reciprocating parts has a4 mass
of 120 kg and the revolving parts are equivalent to a mass of 80 kg at a radius of 100 mm. A mass is
placed opposite to the crank at a radius of 150 mm to balunce the whole of the revolving mass and 2/3rd
of the reciprocating mass, Determine the magnitude of the balancing mass and the resultant residual
unbalance force when the crank has tarned 30° from 1he inner dead centre. Neglect the obliquity of the
connecting rod.

A two-cylinder uncoupled locomotive with cranks at %07 has a crank radius of 320 mm. The distance
between the centres ol driving wheels is 1.5 m. The pitch of cylinders is 0.6 m. The diameter of treads
of driving wheels is 1.8 m. The radius of centres of gravity of balance masses is 0.7 m. The pressure
due to dead load on each of the wheels is 40 kKN. The masses of the reciprocating and rotating parts
per cylinder are 300 kg and 350 kg respectively. The speed of the jocomotive is 60 km/h. Find (4}
the bafancing masses in magnitude and position in the planes of driving wheels to balance whole of the
revolving and 2/3rd of the reciprocating parts. (b) the swaying couple, (¢) the variation in tractive effort.
(d) the maximum and minimum pressure on the rails and (¢} the maximum speed at which 1t is possiblc
1o run the locomotive. in order that the wheels are not lifted from the rails.

A four cylinder etigine has two outer cranks at 120° to each other and their reciprocating masses are each
400 kg. The distance between the planes of rotation of the adjacent cranks are 0.4 m, 0.7 m. 0.7 m and
0.5 m. Find the reciprocating mass and the relative angular position for each of the inner cranks, if the
engine is 1o be in complete primary balance. Alse find the maximum secondary force, if the length of
each crank is 0.4 m, the length of each connecting rod 1.8 m and the engine speed 480 rpm.

In a four crank symmetrical engine, the reciprocating masses of the two outside cylinders A and I are
each 600 kg and those of the two inside cylinders B and C are each 900 kg. The distance between the
cylinder axes of A and D is 5 m. Taking the reference line to bisect the angle between the cranks A and
D and the reference plane 1o bisect the distance between the cylinder axes of A and D. find the angles
between the cranks and the distance between the cylinder axes of B and C for complete balance except
for secondary couples.

Determine the maximum value of the unbalanced secondary couple if the length of the crank is 0.4 m.
length of the connecting rod 1.8 m and speed is 180 rpm.

A three cylinder radial engine driven by a common crank has the cylinders spaced at 120°. The stroke is
120 mm, the length of connecting rod 240 mm. the mass of the reciprocating parts per cylinderis 1 kg and
the speed of the crank shaft is 24(K) rpm. Determine the magnitude of the primary and secondary forces.

A two cylinder V-enginc has the cvlinders set ai an angle ot 45°, with both pistons connected to the single
crank. The crank radius is 60 mm and the connecting rods are 300 mm long. The reciprocating mass per

-line is 1.5 kg and the total rotating mass is equivalent to 2 kg at the crank radius. A balance mass fitted

opposite to the crank is equivalent to 2.5 kg at a radius of %0 mm. Determine for an engine speed of the
maximum and minimum vatues of the primary and secondary forces due to the inertia of reciprocating
and rotating masses, for engine speed of 1800 rpm.

Explain the following:
(a) Balancing of muiti-cylinder in-line engines

(b} Partial balancing of two cylinder steam locomative
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(c) Discuss the effect of primary, secondary forces and couples in a four-cylinder in-line four stroke
engine with mathematical analysis. Compare the above engine with three-cylinder in-line engine
in respect of balancing.

{d}) What is the effect of partial primary balance of a reciprocating engine?

A two cylinder locomotive with cranks at Y0° has a crank radius of 325 mm. The distance between
centres of driving wheels is 1.5 m. The pitch of cylinders is 600 mm. The diameter of treads of driving
wheels is 1.8 m. The radius of centres of gravity of balance weights is 650 mm. The pressure due to dead
load on each wheel is 40 kN. The weights of reciprocating and rotating parts per cylinder are 3.3 kN and
3 kN respectively. The speed of the locomaotive is 60 kmv/h. Find

(a) the balancing weights both in magnitude and position required to be placed in the planes of driving
wheels to balance whole of the revolving and two-third of the reciprocating masses,

{b} the swaying couple,
(¢) the variation of tractive effort,
(d) the maximum and minimum pressure on rails and

(e) the maximum speed at which it is possible to run the locomotive, in order that the wheels are not
lifted from the rails.

In a four-cylinder petrol engine equally spaced, the cranks, numbered from end are 1, 2, 3 and 4. Cranks
1 and 4 are in phase and 180° ahead of cranks 2 and 3. The reciprocating masses of each cylinder weigh
10 N. The cranks are 50 mm radius and the connecting rods 200 mm long,

What are the resultant unbalanced forces and couples, primary and secondary, when cranks t and 4 are
on top dead centre position? The engine is rotating at 1500 rpm in a clockwise direction when viewed
from the front. Take the reference planc midway between the cylinders 2 and 3.

Four weights A, B, Cand Drevolve at equal radit and are equally spaced along shaft. The weights weigh
70 N and the radii of C and D make angles of 90° and 240° respectively with the radius of 8 Find the
magnitude of the weights A, C and D and the angular position of A so that the system may be completely
balanced.

Explain the terms (a) variation in tractive effort, (b) swaying couple and (c¢) hammer blow as applied
to locomotive balancing. Derive expressions for these for a two-cylinder locomotive having cranks
90° apart.

A twin cylinder uncoupled locomotive has its cylinders 0.6 m apart and balance weights are 60° apart. The
planes being symmetrically placed about the centre line. For each cylinder the revolving and reciprocating
masses are 300 kg and 2835 kg at the crank pin radius of 320 mm. All the revolving and 2/3rd of the
reciprocating masses are balanced. The driving wheels are 1.8 m diameter. When the engine runs at
60 km/h, find (a) the swaying couple. (b) the variation in tractive effort, and {c) the hammer blow.

Investigate the state of primary and secondary balancing of a four-stroke cycle four-cylinder engine with
a firing order of I-[I-III-1V. What will be the change in this state when the firing is altered to I-I1-1V-TII?

For a V-engine consisting of two cylinders spaced apart by an angle «, show that the engine may be
passively for first-order forces, but the setond-order horizontal forces remain unbalanced.

Obtain the expressions for primary and secondary forces for a V-engine having two identical cylinders
lying in a plane. The included angle between the cylinder centre lines is 2¢.
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Explain clearly the difterence in the nature of unbalance caused by primary and secondary disturbing
forces in the case of a reciprovating mass, Whitt is the essential ditlerence between unbalance caused by
a reciprocating mass and that vaused by a revolving mass? How will you achieve the complete balance
in the case of a mult-cylinder in-line engine? :

The reciprocating mass per s hinder ima 607 Veengine is E 2 kg, The stroke and the connecting rod length
are 100 mm and 250 mm respectively. I the engine runs at 2000 rpm, determine the maximum and
minimum values of the primary and secondiny forces. Also find out the crank positions corresponding
to these values,

The following data refer to o two-cylinder Focomotive with cranks at 90°:
Reciprocating mass per cvlinder = 300 kg
Crank radius = 300 nun
Diameter of the driving wheels = 1.8 m
Distance between the ovlinder contre lines = 0.65
Distance between the driving whee! centre planes = 1.535m
Determine (a} the Iraction of the regiprocaling masses (o be balanced by placing the halancing masses
on the driving wheels, if the bammier blow ix not 10 exceed 16 KN a4t 96.5 km/h ang (h) the variation in
tractive effort,
(a) Why do high speed rotating and reciprocating machinery need to be balanced 10 practice?
thy A shaft with 3 r span betw een two bearings carries two weights of LOGN and 200 N acting at the
extremities of arms 043 m and 0,60 m long respectively. The planes in which these weights rotate
are 1.2 m and 2.4 m respectisely [rom the Jeft end bearing supporting the shaft {Fig.10.36), The
angle between these arny is 60° as indicated in the inset (a) of Fig.10.36 The speed of rotation of
the shatt is 200 rpon 11 the weights are balanced by two counter-weights totating with the shatt
acting at cadii of 1.3 m and placed at 0.3 mlrom each bearing centre. estimate the magnitude of the
two balance weights and their origntation with respeet 1o the x-axis, that is, load A.
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